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Supplementary Material1

A Steady state INa inactivation: intra- vs. inter-animal variability2

The results of Pathmanathan et al. (2015), as illustrated in Figure 1, use data from 16 canine3

endocardial myocytes, originally published in Cordeiro et al. (2008). These data were obtained from4

multiple animals in experiments that took place over the course of over one year. Seven animals5

contributed a single cell to the dataset, three animals contributed two cells, and one animal three6

cells. In Pathmanathan et al. (2015), inter-subject vs intra-subject variability was not assessed.7

Here we present a short preliminary analysis of inter- vs inter-subject variability, and discuss how8

this variability could be statistically quantified.9

Figure A1, top-left, plots the same data as Figure 1, top-right, but with lines connecting cells10

from the same animal, so that inter- and intra-animal variability can be easily visualised. The11

remaining panels show the same results using three other canine datasets: data from 15 epicardial12

cells originally published in Cordeiro et al. (2008), and data from 10 epi and 10 endocardial cells13

originally published in Murphy et al. (2011). All four datasets were used in Pathmanathan et al.14

(2015). Note that the axis scales are quite different. For a discussion on the differences between15

epi- vs endocardial cells, and on differences between the Cordeiro et al. (2008) and Murphy et al.16

(2011) datasets, see Pathmanathan et al. (2015).17

The results do not display obvious clustering for cells from the same animal, although a visual18

inspection suggestions correlation in V0 and K for cells from the same animal cannot be ruled19

out. It is important to realise that the non-linear mixed effects (NLME) method that was used to20

analyse the data also provides a framework for including these different sources of variability. The21

function that was fit to the data was the sigmoid F (V ;V0,K) = 1/(1 + exp((V − V0)/K))2. Let22

q = (V0, ln(K)). The statistical model that was used in Pathmanathan et al. (2015) was23

qi = q∗ + bi, (A.1)

where i is cell index, q∗ is the fixed effect (red star in Figure 1), and bi is the random effect,24

corresponding to cell-to-cell variability. The bi were assumed to be Normally distributed with25

mean zero and covariance matrix Ψ. The NLME procedure simultaneously estimates q∗ and Ψ.26

This can be extended to account for inter- and intra-animal variability, for example by replacing27

the statistical model (A.1) with28

qij = q∗ + ai + bij , (A.2)

where i is animal index and j cell index, and where we could assume ai ∼ N(0,Ψa) and bij ∼29

N(0,Ψb). The NLME method can be used to estimate q∗, Ψa and Ψb. More general statistical30

models are also possible, such as bij ∼ N(0,Ψb(ai)), which corresponds to the amount of intra-31

subject variability being subject-dependent.32

Analyses such as these should provide deeper understanding of natural variability, although33

estimating the unknown quantities in the above formulation may require more data than presented34

in Figure A1, in which data from only a single cell is available for many of the animals. Other35

factors such as age and gender may also influence inactivation, and in addition Figure A1 shows36

that transmural location affects inactivation properties (see Pathmanathan et al. (2015)). These37

observations emphasise how developing a full quantitative understanding of natural variability, even38

just for this aspect of cardiac electrophysiology, is a major experimental and statistical task.39
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Figure A1: Results of the NLME fitting process for four separate canine steady steady INa inac-
tivation datasets. Stars are the values corresponding to individual cells, the grey line is the 99%
prediction region. Coloured lines connect cells which originated from the same animal. The colours
are for ease of visualisation only, so for example the green line in the top-left sub-figure does not
correspond to the same animal as the green line in the top-right sub-figure. Note the different axis
scales.
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B Case Study 1: Further Details40

B1 Numerical Methods41

The action potential models were downloaded in XML format from the CellML repository (Lloyd42

et al., 2008). The equations were converted into and solved in C++ using a CVODE solver within the43

Chaste framework (Mirams et al., 2013; Cooper et al., 2014). The relative and absolute tolerances44

for the CVODE solver were 10−7 and 10−9, respectively. The sampling time of the CVODE solver45

was set to 0.2 ms. The maximum number of steps the CVODE solver can take in its attempt to46

reach the next output time was set to 5000. This last condition was set to solve a numerical problem47

we were having where the proposal traces had a ‘notch’ in them which made acceptance of new48

states very unlikely, and so the chain became stuck at some set of parameter values. Increasing the49

maximum number of steps smoothed out the trace for the same parameter values so that MCMC50

could proceed as normal.51

The CMA–ES minimisation (Hansen, 2006) was implemented in Python. The objective function52

to be minimised was the negative of the log-likelihood returned by Chaste. The default options were53

used. The source code is available at https://www.lri.fr/~hansen/cmaes_inmatlab.html.54

A custom written Python script was used to perform the MCMC. It interfaced with C++ by55

sending a set of parameters to Chaste and waiting for a log-likelihood to be returned by Chaste56

before performing the adaptive MCMC steps and moving onto the next iteration. The Python script57

uses the NumPy library (Van Der Walt et al., 2011). The figures were produced using matplotlib58

(Hunter, 2007).59

A bolt-on project called Jmcc UQ, compatible with the computational biology C++ library60

Chaste (v3.3), is available to download from http://www.cs.ox.ac.uk/chaste/download.html,61

it contains all the necessary code to reproduce Case Study 1.62

B2 Likelihood63

Given our simulated data, we compute the likelihood of observing this data given a certain set of64

parameters. We make the assumptions:65

� The only source of error in our measurements is that of experimental noise. In other words,66

that the measured data is Normally distributed around some true value, with a standard67

deviation of σmV.68

� We treat σ as an unknown parameter to be inferred, along with the maximal conductance69

parameters.70

� The values of the noise around the true solution at each time point are independently dis-71

tributed.72

� We have a rough idea of what the parameters are; prior knowledge can be accurately repre-73

sented by a uniform distribution across large intervals (which we choose to be from 0.1 × (the74

true parameter value) to 10 × (the true parameter value)). Their joint prior distribution is75

given by Equation (B.3).76

p(θ, σ) =

{
c {θ, σ} in some hypercuboid,
0 otherwise,

(B.3)

where c is a non-zero finite normalising constant.77

We generate a test trace by solving the model equations with the conductance parameters θ. We78

then compute the likelihood of this test trace given our experimental trace using Equation (B.4),79
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which is the product of (independent) Normal probability density functions. x is the experimental80

trace vector and f(θ) is the test trace vector. Both vectors have N entries.81

L(θ, σ) = p(data|{θ, σ}) =
N∏
i=1

N
(
xi|fi(θ), σ2

)
=

N∏
i=1

1√
2πσ2

exp

(
−(xi − fi(θ))2

2σ2

)
. (B.4)

We often deal with very small values close to zero, so we take the natural log of the likelihood,
giving:

l(θ, σ) = log(L({θ, σ}))

= −N
2

log(2πσ2)− 1

2σ2

N∑
i=1

(xi − fi(θ))2

= −N
2

log(2π)−N log(σ)− 1

2σ2

N∑
i=1

(xi − fi(θ))2 (B.5)

Since the first term on the RHS of Equation (B.5) is constant for all proposed θ, it will cancel82

with itself when we take differences of log-likelihoods later on. It is therefore enough to define83

l(θ, σ) ∝ −N log(σ)− 1

2σ2

N∑
i=1

(xi − fi(θ))2. (B.6)

where ∝ means ”up to an additional constant”. For notational simplicity, we concatenate θ and σ84

into a single vector, which we will still call θ. We calculate the posterior probability density, π(θ),85

of a set of parameters θ using Bayes’ rule:86

π(θ) = p(θ|data) =
p(data|θ)p(θ)∫

Θp(data|θ)p(θ) dθ
. (B.7)

We are unable to integrate functions with respect to p(θ|data) given in Equation (B.7), so we87

sample from this distribution using MCMC to allow us to approximate these integrals.88

B3 Pre-MCMC CMA–ES minimisation89

Before starting our MCMC to sample from the probability distribution, we want some idea of where90

π(θ) puts mass in the parameter space Θ. We therefore run a CMA–ES (Hansen, 2006) minimiser91

with objective function −l(θ). This will hopefully give us a point estimate for the greatest log-92

likelihood. MCMC with a Gaussian proposal will work best if the mass is distributed around this93

point, and that there are no other modes elsewhere. If several runs of CMA–ES only find one point94

with the best log-likelihood, it is likely that the target distribution will be uni-modal.95

We run the CMA–ES minimiser from a number of starting points in the unit hypercube. These96

starting points are randomly sampled uniformly from this space. These values are then linearly97

scaled to lie in the support of the prior given in Equation (B.3). The final values returned by the98

minimiser are saved, and the one yielding the best log-likelihood is used as the starting point for99

the MCMC, after being re-scaled. We have used the default options in CMA–ES, with an initial100

step size of 0.1.101
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B4 Adaptive Metropolis-Hastings algorithm102

We sample from this distribution using MCMC with Metropolis-Hastings1 with adaptive covariance103

matrix, given in Algorithm 1. For the first 1,000 × (number of parameters) iterations, there is104

no adaptation. This is to establish those directions in parameter space which are associated with105

good likelihood. After this, the covariance matrix of the multivariate Normal proposal distribution106

is updated at each iteration, taking into account the direction of accepted points. This adaptive107

covariance matrix aligns itself along directions with the best log-likelihoods, and a scalar multiple108

scales how wide the proposal distribution is.109

After running the MCMC, we discard the first quarter of all the iterations as burn-in, during110

which time the chain is settling into its stationary distribution, which is our target distribution by111

construction. We let the MCMC run for long enough so that the initial stage of non-adaptivity is112

entirely contained within the burn-in and so is discarded.113

We also perform thinning on the chain by only saving every 10th iteration. Practically, this114

reduces the output file size, and theoretically, this reduces auto-correlation of the samples, so that115

the chain intuitively better represents independent samples from the target probability distribution.116

Algorithm 1 Adaptive Metropolis-Hastings MCMC, continued in Algorithm 2.

1: log(a0)← 0.
2: θ0 determined by CMA–ES minimisation.
3: µ0 ← θ0.
4: Σ0 ← D, where D is a diagonal matrix.
5: t := 0
6: while t ≤ 1000×(number of parameters) do
7: Given the current parameter state θt, sample θ∗ ∼ N (·|θt, a0Σ0).
8: if p(θ∗) 6= 0 then
9: Compute log(α) = l(θ∗)− l(θt).

10: Sample u ∼ U(0, 1).
11: if u < α then
12: θt+1 ← θ∗.
13: accepted← 1.
14: else
15: θt+1 ← θt.
16: accepted← 0.
17: end if
18: else
19: θt+1 ← θt.
20: accepted← 0.
21: end if
22: t++
23: end while

B5 Additional methods for simulation of canine patch-clamp experiment117

Figure B2 shows the periods of the experiment which were taken for this study, and provides an118

impression of the beat-to-beat variability of one aspect of the APs — their duration. The full119

1Something Spanish? Beat heard accompanying steps (9)
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Algorithm 2 Adaptive Metropolis-Hastings MCMC continued from Algorithm 1.

24: loop
25: s← t− 1000×(number of parameters).
26: γs ← (s+ 1)−0.6.
27: Given the current parameter state θt, sample θ∗ ∼ N (·|θt, as−1Σs−1).
28: if p(θ∗) 6= 0 then
29: Compute log(α) = l(θ∗)− l(θt).
30: Sample u ∼ U(0, 1).
31: if u < α then
32: θt+1 ← θ∗.
33: accepted← 1.
34: else
35: θt+1 ← θt.
36: accepted← 0.
37: end if
38: else
39: θt+1 ← θt.
40: accepted← 0.
41: end if
42: Σs ← (1− γs)× Σs−1 + γs × (θt+1 − µs−1)T (θt+1 − µs−1).
43: µs ← (1− γs)× µs−1 + γs × θt+1.
44: log(as)← log(as−1) + γs × (accepted− 0.25).
45: t++
46: end loop
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dataset is available to download as part of the code associated with this project.120
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Figure B2: Summary of the whole patch clamp experiment. Action Potential Durations (APD90)
are shown for every pace in the experiment. The first grey shaded region, at paces #150–179,
shows the training data, at control. The first red line shows when 10µM Moxifloxacin was added,
the second when the bath KCl concentration was increased to 5.4mM (raising the extracellular
potassium concentration). The second shaded region, at paces #400–429, highlights the validation
data paces. The shaded regions were chosen to be representative of the patch-clamped cell having
settled to roughly steady behaviour in control and altered conditions. After pace ∼ #450 the patch-
clamp becomes unstable and action potentials lengthen until they are over 1 s long and we have
2 paces: 1 AP (at around pace #530, leading to an artefact in the plot by which the APD appears
to be the full length of the trace, and then short on the next pace).

We adapted a method proposed by Dokos and Lovell (2004) to clamp the generated action121

potential to the experimental voltage trace during just that part of the upstroke attributable to the122

stimulus current.123

The data clamp current takes the form124

Iclamp = gclamp (V − Vdata) . (B.8)

Dokos and Lovell (2004) used the integral of Iclamp as an objective function to minimise. We125

simply use this method to ensure we are representing the effect of the stimulus current exactly,126

and then let the action potential evolve as normal, and continue to calculate the likelihood as127

before (see Section B2). To enable the CVODE solver to recover Vdata at any time (it is taking128

adaptive time steps), linear interpolation is performed. We coded this feature into Chaste (http:129

//www.cs.ox.ac.uk/chaste) so the upcoming release v3.4 will allow a data clamp to be applied to130

any CellML model. We switched on the data clamp by setting its conductance gclamp to 300 mS/µF131

during the time period shown in Figure B3, and zero otherwise.132

We inferred conductances from each AP independently according to the following procedure133
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Figure B3: Left: Experimental action potential recordings of the 30 subsequent paces shown in
Figure B2. Right: zoomed in view to show the effect of the experimentally-applied stimulus on
membrane voltage. The grey box is overlaid to show the time in which we apply the data clamp
current for each trace to ensure simulations follow the voltage time course throughout this time
period.

� Set the intra- and extra-cellular potassium concentrations to the concentration of KCl in the134

experiment135

� Set the initial voltage value to the initial voltage value in AP trace.136

� Apply ‘data clamp current’ for a short time during the relevant part of the upstroke. We137

found this method was necessary to ensure that the main upstroke was provided by INa and138

not the applied stimulus current, particularly if assessing different models (not shown here).139

� Turn off the data clamp allow the model to continue for a total of 1000 ms.140

� Repeat this many times until the model reaches its steady state for its default parameters,141

defined by L1 norm of difference in state variables after successive paces being less than 10−6.142

� Since the stimulus currents are highly consistent (Figure B3), we use the same steady state143

as initial conditions for fitting all traces.144

� Perform CMA–ES runs followed by MCMC for each dog trace (#150–179), as described in145

the methods of the main text.146

B6 Additional results for Section 2.2147

Superimposed normalised histograms of inferred distributions for gK1, gKr and gKs using the ten148

Tusscher et al. model under two protocols are given in Figure B4. Note that all inferred distributions149

in the 2[K+]o protocol are shifted to the left, i.e. the inferred conductance values are generally150

smaller.151

A summary of which conductances were successfully inferred from the ten Tusscher et al. (2004),152

O’Hara et al. (2011) and Davies et al. (2012) models is given in Table B1. All conductances were153

successfully inferred for the four simpler models.154
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Figure B4: Superimposed normalised histograms for gK1, gKr and gKs for two protocols using the
ten Tusscher et al. model. The blue histograms are from the 2[K+]o protocol, the green are from
the 1 Hz single AP protocol. The vertical black lines are the original values given in the model.
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Parameter
Protocol

1Hz 0.5[K+]o 2[K+]o 1 & 2Hz 1Hz for 2000ms, Gx = 0 at 1000ms 1Hz 1Hz
1 AP 1 AP 1 AP 3 APs GCaL GK1 GKr GKs Gto 10 s 20 s

ten Tusscher et al. (2004)
GNa 3 3 3 3 3 3 3 3 3 3 3
GCaL 3 3 3 3 3 3 3 3 3 3 3
GK1 3 3 3 3 3 3 3 3 3 3 3
GKr 3 3 7 3 3 3 3 3 3 3 3
GKs 3 3 7 3 3 3 3 3 3 3 3

kNaCa 7 7 7 3 3 3 3 7 3 3 3
Gto 3 3 3 3 3 3 3 3 3 3 3

GbCa 7 7 7 7 7 7 7 7 7 3 3
GbNa 7 7 7 7 7 7 7 7 7 7 3
GpCa 7 7 7 3 3 3 7 7 3 3 3

GpK 3 3 3 3 3 3 3 3 3 3 3

PNaK 7 7 7 7 7 3 7 7 7 3 3

O’Hara et al. (2011)
GNa 3 3 3 3 3 3 3 3 3 3 3
GCaL 7 3 7 3 3 3 3 3 3 3 3
GbK 7 7 7 3 3 3 3 3 7 3 3
GK1 3 3 3 3 3 3 3 3 3 3 3
GKr 3 3 7 3 3 3 3 3 3 3 3
GKs 7 7 7 3 3 3 3 3 7 3 3

kNaCa 7 7 7 3 3 3 3 3 3 3 3
PNaK 7 7 7 7 3 7 3 7 7 3 3
Gto 3 3 3 3 3 3 3 3 3 3 3

GbCa 7 7 7 7 7 7 7 7 7 7 3
GbNa 7 7 7 7 7 7 7 7 7 7 7
GpCa 7 7 7 7 7 7 7 7 7 7 7

GNaL 3 3 7 3 3 3 3 3 3 3 3

Davies et al. (2012)
GNa 3 3 3 3 3 3 3 3 3 3 3
GCaL 3 3 3 3 3 3 3 3 3 3 3
GK1 3 3 3 3 3 3 3 3 3 3 3
GpK 7 3 7 3 3 3 3 3 3 3 3

GKs 7 7 7 7 7 7 7 3 3 3 3
GKr 7 7 7 3 3 3 3 3 3 3 3
GpCa 7 7 7 7 7 7 7 7 7 7 7

GbCa 7 7 7 7 7 3 3 3 7 3 3
kNaCa 7 3 3 3 3 3 3 3 3 3 3
PNaK 7 7 7 3 7 3 3 3 3 3 3
Gto1 3 3 3 3 3 3 3 3 3 3 3
Gto2 3 7 7 3 3 3 3 3 3 3 3
GbCl 7 7 7 7 7 7 7 7 7 7 7
GNaL 7 7 7 3 3 3 3 3 3 3 3

Table B1: Inference success for each conductance in the ten Tusscher et al. (2004), O’Hara et al.
(2011) and Davies et al. (2012) models. The other four models had every parameter successfully
inferred for every protocol.
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B6.1 Prediction of beat-to-beat variability in a canine myocyte155

Figure B5 shows the result of taking the maximum likelihood conductances that were inferred from156

each pace at control, and using these to predict changes to the action potential under the addition157

of 10µM Moxifloxacin and 5.4 mM KCl rather than 4 mM, as described in Section 2.1.2. The model158

consistently predicted a lower resting potential, and a shorter APD than the experiment. This could159

be due to the experiment not having reached a steady-state response, the resting potential was still160

dropping at paces #400–429 (not shown, but full dataset is available to download). The original161

model parametrisation behaves the same way, so whatever the cause, this is not purely a product162

of our re-parametrisation procedure.163
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Figure B5: Left: blue — experimental APs #150–179, and red — experimental APs #400–429.
Right: blue — simulated APs using maximum likelihood conductances inferred from experimental
paces #150–179, and red — predicted APs using the same parameters under Moxifloxacin and
raised extracellular potassium concentration.

In Figure B6 we plot the dispersion of APDs that are present in the data shown in Figure B5.164

There is a good correspondence in predicted beat-to-beat variability, with an increase relative to the165

control situation. The slight underestimate of variability in the simulation predictions is consistent166

with the observation that longer APDs lend themselves to higher variability (Heijman et al., 2013),167

and so we would expect that a model which reproduced the baseline response more closely may also168

improve the beat-to-beat variability predictions.169

The fact that the model predictions are not very good for the absolute APD and resting potential170

indicates that Structural Uncertainty may be playing a large role. This may be caused by differences171

between the experimental preparation and its approximation in our simulations, rather than simply172

the model being inadequate/untested for simulating altered extracellular potassium and block of173

ion channels.174
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Figure B6: Dispersion of APD in the datasets shown in Figure B5. Left: in the training dataset,
from traces #150–179. Right: in the prediction dataset, traces #400–429. Quartiles overlaid.

C Case Study 2: introduction to GP emulators175

A Gaussian Process is a distribution over functions, that generalises classical regression (Rasmussen176

and Williams, 2006). A GP is parametrized by two functions: a mean function and a covariance177

function. The GP with mean function m(x) and covariance function c(x, x′) is the unique distri-178

bution on function f such that given any number of fixed test inputs x1, . . . ,xn, the values of f at179

x1, . . . ,xn are jointly Gaussian, with mean m(x1), . . . ,m(xn), and with covariance matrix c(xi,xj).180

Thus, m describes a trend, while c encodes how much the value of f at different inputs should be181

correlated. GPs have been widely used in statistics, as they enjoy many desirable computational182

properties. In particular, conditioning a GP on training points, where on has evaluated the target183

function, still yields a GP posterior distribution on f , the mean and covariance functions of which184

can be analytically computed.185

In this supporting information, we provide a simple example of emulation, and then include186

details of the mathematics that underpin the GP emulator work described in Case Study 2. A much187

more in-depth coverage of Gaussian process (GP) emulators is given in the MUCM webpages and the188

toolkit that has been developed there http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php.189

Our aim here is to describe the pathway through this material that was followed for the present190

study.191

C1 Simple example192

Figure C7 illustrates the results of GP emulation of a simple hypothetical computational model.193

For this example, the computational model is assumed to be dependent on one input parameter,194
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and provides one output parameter of interest. Suppose this computational model is expensive to195

run, but that the model has been run at 6 values of model input parameter, (0, 0.2, 0.4, 0.6, 0.8, 1).196

These values, and the corresponding model outputs, are the design data for the emulator. The197

emulator is constructed from the design data, and the result includes an expectation function (solid198

line in figure), which is the prediction of what the model output is at other inputs, and can be199

used as a surrogate for the original computational model. The emulator also provides a variance200

function (represented by the shaded region), which represents uncertainty of the emulator output201

as a function of model input values. Therefore, the variance is zero at design points (where there is202

no uncertainty since the model was run at these points), and increases away from design points.203

In general, a meta-model is defined as a surrogate for a model (for example, a simple polynomial204

interpolant through the data points in Figure C7), and an emulator is defined as a meta-model that205

also provides uncertainty in the prediction.206

Once constructed, an emulator can be tested (validated) by running the model again (e.g. at207

input = 0.5 say) and comparing the emulator prediction with the model output, given the emulator208

uncertainty. If the model result at this new input is several standard deviations away from the209

expected value, this suggests the emulator requires improvement (by using more design data, say).210

Now suppose we have some real data on the input parameter, and can generate a probability211

density function for it. This is represented in the figure with the distribution illustrated on the input212

axis; here we have assumed the input was observed to have mean value 0.8 and standard deviation213

0.04. (This is the uncertainty characterisation stage). Then, the uncertainty propagation stage214

involves computing the corresponding distribution of the model output, which is also illustrated215

in the figure. This could be performed using Monte Carlo sampling and repeatedly running the216

original model (which could be infeasible if the model is very expensive to run), or alternatively using217

Monte Carlo sampling and repeatedly evaluating the emulator predictions. However, if the input is218

discovered or assumed to be Normally distributed, there is an analytic description of the mean and219

variance of the output, which can be computed directly from emulator properties. (The emulator’s220

uncertainty regarding the model output is also accounted for in this analytic description). Therefore,221

uncertainty propagation can be performed without the need for additional sampling. Hence, GP222

emulators can be especially useful even for computational models that are not very expensive to223

solve.224

C2 Emulator implementation225

The GP emulators used in this study were constructed using the approach described in the MUCM226

web pages, and full mathematical details are given in the supporting information to (Chang et al.,227

2015).228

Briefly, each TP06 emulator was described by a Gaussian process (GP),229

GP(x) = h(x)Tβ + σ2c(x,x′). (C.9)

which was composed of a linear mean function m(x) = h(x)Tβ, where h(x) = (1,x)T such that230

h(x)Tβ = β0 + β1x1 + ...+ βPxP , (C.10)

and a Gaussian covariance function σ2c(x,x′), with231

c(x1,x2) = exp

− P∑
p=1

{
(xp,1 − xp,2)

δp

}2
 . (C.11)

14



−0.2 0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

Input parameter

M
od

el
 o

ut
pu

t

Figure C7: Emulation of a model that takes in a single input. Stars: inputs and corresponding
outputs at which the original model was run. Line: expectation function of the emulator, i.e. the
predicted value of the model at other inputs. Light shaded area: a representation of the uncer-
tainty of the prediction by the emulator—one standard deviation above and below the predicted
value. Dark shaded area: illustration of an example input distribution that might be observed from
data (uncertainty characterisation stage), and illustration of the corresponding output distribu-
tion (uncertainty propagation stage). This figure was created by recreating the MUCM exam-
ple http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=ExamCoreGP1Dim.html, al-
though the absolute values were altered.

In these equations x = (x1, x2, ... , xP ) are P model inputs, β and δ are vectors of length232

P , and σ2 is a scalar. The emulator is specified by the hyperparameters β, δ, and σ2. These233

hyperparameters were obtained by fitting the emulator to the design data, assuming a flat prior on234

δ of 1.0, and then maximising the posterior likelihood given the design data as detailed in (Chang235

et al., 2015).236

C3 Emulator validation237

The emulators were validated by generating an additional set of test data, comprising inputs and238

outputs from 10 model runs. For each set of inputs in the test data, the outputs obtained from the239

emulator were compared with the outputs obtained from the AP model for the same inputs, and240

the differences were compared using the Mahanalobis distance (Bastos and O’Hagan, 2009; Chang241

et al., 2015)242

The Mahalanobis distance for the complete set of test data was a measure of overall agreement243

between the predicted and test data. The results are summarised in Table C2, where the second244

column shows the reference distribution for the Mahanalobis distance. For design data with 50 sets245

of input and output data, the Mahalanobis distance for each emulator was within one standard246

deviation of the mean of the reference distribution, so these emulators were judged to be a good247

trade off between emulator fit and the number of model runs required to generate the design data,248

and were used for all the results described in the main text.249
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Table C2: Mahalanobis distance for each of the six TP06 emulators: fitted with n = 25, 50 and 100
design points.

Design data Mean (SD) Max dVm/dt Max Vm Dome Vm APD90 Rest Vm APD50

n = 25 10 (12.87) 18.2897 13.0487 10.1815 15.6885 14.2972 18.2897
n = 50 10 (5.24) 10.7534 5.8113 5.488 7.4894 8.9025 10.3506
n = 100 10 (7.12) 10.5641 11.1173 17.5544 10.0706 10.8453 9.6464

C4 Emulator Implementation250

All of the code for this study was implemented in Matlab, using expressions detailed in the MUCM251

toolkit (http://mucm.aston.ac.uk/MUCM/MUCMToolkit/). The code was tested against the nu-252

merical examples provided in the toolkit.253

Further details of the methods used to calculate the mean effects and sensitivity indices are254

given in (Chang et al., 2015).255
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